DocumentCode :
2132977
Title :
Mapping leaf area index heterogeneity over Canada using directional reflectance and anisotropy canopy reflectance models
Author :
Leblanc, Sylvain G. ; Chen, Jing M. ; White, H. Peter ; Latifovic, Rasim ; Fernandes, Richard ; Roujean, Jean-Louis ; Lacaze, Roselyne
Author_Institution :
Natural Resources Canada, Canada Centre for Remote Sensing, Ottawa, Ont., Canada
Volume :
5
fYear :
2002
fDate :
2002
Firstpage :
3059
Abstract :
Leaf area index (LAI) retrieval from remote sensing is a very active research field. In heterogeneous canopies, simulations with the canopy reflectance model five-scale show that nadir view vegetation indices, such as NDVI and simple ratio (SR), based on near infrared and red reflectance are more closely related to the gap fraction at the solar zenith angle than the LAI. The gap fraction is important in canopy light interception. At the solar zenith angle, it can be used to estimate the amount of sunlit LAI. But the knowledge or LAI and foliage heterogeneity are both needed to estimate shaded leaves that are also important in the carbon cycle. In our previous studies, we developed a methodology to retrieve the foliage heterogeneity, represented by a clumping index, from remote sensing. The retrieval is accomplished with an anisotropy index using broadband directional reflectance at the hotspot and at the darkspot. The combination of nadir, hotspot, and darkspot views allows the LAI retrieval for a given cover type. However, directional measurements are not usually acquired with the same sun-target-sensor geometry, so the anisotropy kernel-based four-scale linear model for anisotropy reflectance (FLAIR) is used to interpolate the directional reflectance from ADEOS-POLDER data to acquire hotspot and darkspot reflectance at a common geometry in the near infrared band. A landcover map at 1-km based on SPOT-VGT data acquired in 1998 and directional POLDER data acquired over Canada in June 1997, are used to map the clumping index. The results show consistent clumping index values compared to in-situ values, and that SR and the anisotropy index are not correlated to each other, indicating that both indices are related to different canopy properties.
Keywords :
vegetation mapping; ADEOS-POLDER data; Canada; FLAIR; LAI; NDVI; POLDER data; SPOT-VGT data; anisotropy canopy reflectance models; anisotropy index; broadband directional reflectance; canopy light interception; canopy reflectance model; clumping index; darkspot; directional reflectance models; five-scale; foliage heterogeneity; four-scale linear model for anisotropy reflectance; gap fraction; hotspot; leaf area index heterogeneity; nadir view vegetation indices; near infrared; red reflectance; remote sensing; shaded leaves; simple ratio; solar zenith angle; Anisotropic magnetoresistance; Geography; Geometry; Information retrieval; Reflectivity; Remote sensing; Solar radiation; Solid modeling; Strontium; Vegetation mapping;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Geoscience and Remote Sensing Symposium, 2002. IGARSS '02. 2002 IEEE International
Print_ISBN :
0-7803-7536-X
Type :
conf
DOI :
10.1109/IGARSS.2002.1026869
Filename :
1026869
Link To Document :
بازگشت