Title :
VSOP fuzzy numbers and fuzzy comparison relations
Author :
Tamura, Naoyuki ; Horiuchi, Kiyomitsu
Author_Institution :
Dept. of Comput. & Syst. Eng., Kobe Univ., Japan
Abstract :
A fuzzy (real) number is usually defined as a normal convex and upper semicontinuous fuzzy set on R. However, the conventional fuzzy numbers do not fulfil some useful algebraic properties, such as axioms for a group. The authors introduce a new fuzzy number system called VSOP (vector set of ordered pairs). VSOP is a natural extension of the conventional fuzzy number, and satisfies the axioms for a ring. Fuzzy comparison relations on VSOP are also introduced. VSOP can be usefully applied to various fuzzy systems, such as fuzzy linear regression analysis, fuzzy linear programming, etc
Keywords :
fuzzy set theory; linear programming; statistical analysis; VSOP fuzzy numbers; axioms; fuzzy comparison relations; fuzzy linear programming; fuzzy linear regression analysis; vector set of ordered pairs; Computer science education; Ear; Fuzzy sets; Fuzzy systems; Linear programming; Mathematics; Regression analysis; Systems engineering and theory; Systems engineering education; Vectors;
Conference_Titel :
Fuzzy Systems, 1993., Second IEEE International Conference on
Conference_Location :
San Francisco, CA
Print_ISBN :
0-7803-0614-7
DOI :
10.1109/FUZZY.1993.327578