DocumentCode :
2139573
Title :
A modeling method based on ML-DC algorithm for non-Gaussian colored processes
Author :
Jinhua Hu ; Pingbo Wang ; Feng Liu ; Yu Wang
Author_Institution :
Electron. Eng. Coll., Naval Univ. of Eng., Wuhan, China
fYear :
2013
fDate :
23-25 July 2013
Firstpage :
1224
Lastpage :
1228
Abstract :
Gaussian mixture autoregressive model is usually used to fit the probability density and power spectrum density of non-Gaussian colored processes. Its parameters can be estimated through the ML-DC algorithm. After descriptions of the model and the estimation problem, maximum likelihood estimation for autoregressive parameters and the dynamic clutter algorithm for Gaussian mixture parameters are deduced, respectively. Based on these, ML-DC algorithm for coupling estimation between power spectrum density parameters and probability density parameters is built up. Finally, a numerical instance is illustrated where performance of estimation is discussed in detail.
Keywords :
Gaussian processes; autoregressive processes; clutter; maximum likelihood estimation; mixture models; probability; Gaussian mixture autoregressive model; Gaussian mixture parameters; ML-DC algorithm; autoregressive parameters; coupling estimation; dynamic clutter algorithm; maximum likelihood estimation; nonGaussian colored processes; parameter estimation; power spectrum density parameters; probability density parameters; Clutter; Educational institutions; Heuristic algorithms; Maximum likelihood estimation; Parameter estimation; Signal processing algorithms; Dynamic clutter algorithm; Gaussian mixture autoregressive model; Maximum likelihood estimation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Natural Computation (ICNC), 2013 Ninth International Conference on
Conference_Location :
Shenyang
Type :
conf
DOI :
10.1109/ICNC.2013.6818165
Filename :
6818165
Link To Document :
بازگشت