DocumentCode :
2142261
Title :
Transcript Mapping for Handwritten Text Lines Using Conditional Random Fields
Author :
Zhou, Xiang-Dong ; Yin, Fei ; Wang, Da-Han ; Wang, Qiu-Feng ; Nakagawa, Masaki ; Liu, Cheng-Lin
Author_Institution :
Tokyo Univ. of Agric. & Technol., Tokyo, Japan
fYear :
2011
fDate :
18-21 Sept. 2011
Firstpage :
58
Lastpage :
62
Abstract :
This paper presents a conditional random field (CRF) model for aligning online handwritten Chinese/Japanese text lines (character strings) with the corresponding transcripts. The CRF model is defined on a lattice which contains all possible segmentation hypotheses. The feature functions characterize the shape and context dependences of characters, including the scores of character recognition and the geometric compatibilities between characters. The combining parameters are optimized by energy minimization. Experimental results on two online databases: CASIA-OLHWDB and TUAT Kondate demonstrate the effectiveness of the proposed method.
Keywords :
Markov processes; handwritten character recognition; image segmentation; optimisation; text analysis; CRF model; conditional random fields; feature functions; handwritten text lines; online databases; optimization; segmentation hypotheses; transcript mapping; Character recognition; Databases; Handwriting recognition; Hidden Markov models; Image segmentation; Lattices; Training; conditional random fields; text alignment; transcript mapping;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Document Analysis and Recognition (ICDAR), 2011 International Conference on
Conference_Location :
Beijing
ISSN :
1520-5363
Print_ISBN :
978-1-4577-1350-7
Electronic_ISBN :
1520-5363
Type :
conf
DOI :
10.1109/ICDAR.2011.21
Filename :
6065276
Link To Document :
بازگشت