DocumentCode :
2142339
Title :
Keyword Spotting in Online Handwritten Documents Containing Text and Non-text Using BLSTM Neural Networks
Author :
Indermühle, Emanuel ; Frinken, Volkmar ; Fischer, Andreas ; Bunke, Horst
Author_Institution :
Inst. of Comput. Sci. & Appl. Math., Univ. of Bern, Bern, Switzerland
fYear :
2011
fDate :
18-21 Sept. 2011
Firstpage :
73
Lastpage :
77
Abstract :
Spotting keywords in handwritten documents without transcription is a valuable method as it allows one to search, index, and classify such documents. In this paper we show that keyword spotting based on bi-directional Long Short-Term Memory (BLSTM) recurrent neural nets can successfully be applied on online handwritten documents with non-text content. It even works without preprocessing steps such as text vs. non-text distinction and text line extraction. We also propose a modification that can improve the precision with little effort.
Keywords :
document handling; recurrent neural nets; BLSTM neural networks; bidirectional long short-term memory recurrent neural nets; keyword spotting; nontext content; online handwritten documents; text line extraction; Conferences; Handwriting recognition; Ink; Neural networks; Text analysis; Training; Vectors; BLSTM; document analysis; keyword spotting; online handwriting; recurrent nn;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Document Analysis and Recognition (ICDAR), 2011 International Conference on
Conference_Location :
Beijing
ISSN :
1520-5363
Print_ISBN :
978-1-4577-1350-7
Electronic_ISBN :
1520-5363
Type :
conf
DOI :
10.1109/ICDAR.2011.24
Filename :
6065279
Link To Document :
بازگشت