DocumentCode :
2143116
Title :
SCC thermal model identification via advanced bias-compensated least-squares
Author :
Diversi, Roberto ; Bartolini, Andrea ; Tilli, Andrea ; Beneventi, Francesco ; Benini, Luca
Author_Institution :
DEI, University of Bologna, Viale del Risorgimento 2, 40136, Italy
fYear :
2013
fDate :
18-22 March 2013
Firstpage :
230
Lastpage :
235
Abstract :
Compact thermal models and modeling strategies are today a cornerstone for advanced power management to counteract the emerging thermal crisis for many-core systems-on-chip. System identification techniques allow to extract models directly from the target device thermal response. Unfortunately, standard Least Squares techniques cannot effectively cope with both model approximation and measurement noise typical of real systems. In this work, we present a novel distributed identification strategy capable of coping with real-life temperature sensor noise and effectively extracting a set of low-order predictive thermal models for the tiles of Intel´s Single-chip-Cloud-Computer (SCC) many-core prototype.
Keywords :
Autoregressive processes; Noise; Noise measurement; Temperature measurement; Temperature sensors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Design, Automation & Test in Europe Conference & Exhibition (DATE), 2013
Conference_Location :
Grenoble, France
ISSN :
1530-1591
Print_ISBN :
978-1-4673-5071-6
Type :
conf
DOI :
10.7873/DATE.2013.060
Filename :
6513506
Link To Document :
بازگشت