DocumentCode :
2143335
Title :
Geometrical and Combinatorial Nature of Pearson Residuals
Author :
Tsumoto, Shusaku ; Hirano, Shoji
Author_Institution :
Dept. of Med. Inf., Shimane Univ., Izumo, Japan
fYear :
2010
fDate :
14-16 Aug. 2010
Firstpage :
489
Lastpage :
494
Abstract :
This paper focuses on residual analysis of statistical independence of multiple variables from the viewpoint of linear algebra. The results show that multidimensional residuals are represented as linear sum of determinants of 2 × 2 submatrices, which can be viewed as information granules measuring the degree of statistical dependence.
Keywords :
artificial intelligence; combinatorial mathematics; information theory; matrix algebra; statistical analysis; Pearson residuals; information granules; linear algebra; multidimensional residuals; statistical independence residual analysis; submatrices; Context; Data mining; Equations; Matrix decomposition; Probability; Pearson residual; contingency table; information granules; statistical independence;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Granular Computing (GrC), 2010 IEEE International Conference on
Conference_Location :
San Jose, CA
Print_ISBN :
978-1-4244-7964-1
Type :
conf
DOI :
10.1109/GrC.2010.96
Filename :
5575973
Link To Document :
بازگشت