DocumentCode :
2145339
Title :
Complexity limitations on quantum computation
Author :
Fortnow, Lance ; Rogers, John
Author_Institution :
Dept. of Comput. Sci., Chicago Univ., IL, USA
fYear :
1998
fDate :
15-18 Jun 1998
Firstpage :
202
Lastpage :
209
Abstract :
We use the powerful tools of counting complexity and generic oracles to help understand the limitations of the complexity of quantum computation. We show several results for the probabilistic quantum class BQP. BQP is low for PP, i.e., PPBQP=PP. There exists a relativized world where P=BQP and the polynomial-time hierarchy is infinite. There exists a relativized world where BQP does not have complete sets. There exists a relativized world where P=BQP but P≠UP∩coUP and one-way functions exist. This gives a relativized answer to an open question of Simon
Keywords :
Turing machines; computational complexity; BQP; complete sets; counting complexity; generic oracles; one-way functions exist; polynomial-time hierarchy; probabilistic quantum class; quantum computation; relativized world; Computer science; Polynomials; Quantum computing; Quantum mechanics; Surges; Turing machines; Uniform resource locators; Upper bound; World Wide Web;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computational Complexity, 1998. Proceedings. Thirteenth Annual IEEE Conference on
Conference_Location :
Buffalo, NY
ISSN :
1093-0159
Print_ISBN :
0-8186-8395-3
Type :
conf
DOI :
10.1109/CCC.1998.694606
Filename :
694606
Link To Document :
بازگشت