Title :
Application of PSO-Based Neural Network in Quality Assessment of Construction Project
Author :
Shi, Huawang ; Li, Wanqing
Author_Institution :
Sch. of Civil Eng., Hebei Univ. of Eng., Handan
Abstract :
Construction project quality management, the basis of construction management, is crucial for construction firms to survive and grow in the industry. This paper presents the adoption of a particle swarm optimization (PSO) model to train perceptrons in assessment and predicting the quality of construction projects in China. Artificial neural network (ANN) has preeminent learning ability, but often exhibit inconsistent and unpredictable performance for noisy data. The particle swarm optimization (PSO) technique is used to train the multi-layered feed forward neural networks to discriminate the different operating conditions. Comparing with back-propagation ANN and ANN based on genetic algorithms, the simulated results of quality assessement of construction projects show that training the neural network by PSO technique gives more accurate results (in terms of sum square error) and also faster (in terms of number of iterations and simulation time) than BPN and GA-based ANN.
Keywords :
construction industry; mean square error methods; multilayer perceptrons; particle swarm optimisation; quality management; PSO-based neural network; artificial neural network; construction firm; construction industry; construction management; construction project; learning ability; multilayered feed forward neural network; particle swarm optimization; perceptrons; quality assessment; quality management; sum square error; Artificial neural networks; Construction industry; Feeds; Multi-layer neural network; Neural networks; Particle swarm optimization; Predictive models; Project management; Quality assessment; Quality management; Artificial Neural Network(ANN); construction project; particle swarm optimization (PSO); quality assessment;
Conference_Titel :
MultiMedia and Information Technology, 2008. MMIT '08. International Conference on
Conference_Location :
Three Gorges
Print_ISBN :
978-0-7695-3556-2
DOI :
10.1109/MMIT.2008.66