DocumentCode :
2146883
Title :
A new criterion for optimal constrained minimax detection and classification
Author :
Fillatre, Lionel ; Nikiforov, Igor
Author_Institution :
ICD - LM2S, Univ. de Technol. de Troyes (UTT), Troyes, France
fYear :
2011
fDate :
22-27 May 2011
Firstpage :
3616
Lastpage :
3619
Abstract :
This paper addresses the problem of anomaly detection and classification by using a noisy measurement vector corrupted by some linear unknown nuisance parameters. An invariant constrained asymptotically uniformly minimax test is proposed. It minimizes the maximum false classification probability as the signal-to-noise ratio becomes arbitrary large, uniformly with respect to the unknown anomaly amplitude and independently on the nuisance parameters. The probability of maximum classification error is calculated in a closed-form.
Keywords :
minimax techniques; probability; signal classification; signal detection; anomaly classification; anomaly detection; invariant constrained asymptotically uniformly minimax test; linear unknown nuisance parameters; maximum false classification probability; noisy measurement vector; optimal constrained minimax classification; optimal constrained minimax detection; signal detection; signal-to-noise ratio; Error probability; Noise; Noise measurement; Testing; Vectors; Signal detection; classification algorithms; minimax techniques;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech and Signal Processing (ICASSP), 2011 IEEE International Conference on
Conference_Location :
Prague
ISSN :
1520-6149
Print_ISBN :
978-1-4577-0538-0
Electronic_ISBN :
1520-6149
Type :
conf
DOI :
10.1109/ICASSP.2011.5946261
Filename :
5946261
Link To Document :
بازگشت