• DocumentCode
    2147249
  • Title

    Exploring topologies for source-synchronous ring-based Network-on-Chip

  • Author

    Mandal, Ayan ; Khatri, Sunil P. ; Mahapatra, Rabi N.

  • Author_Institution
    Texas A&M University, College Station 77843, USA
  • fYear
    2013
  • fDate
    18-22 March 2013
  • Firstpage
    1026
  • Lastpage
    1031
  • Abstract
    The mesh interconnection network has been preferred by the Network-on-Chip (NoC) community due to its simple implementation, high bandwidth and overall scalability. Most existing mesh-based NoC designs operate the mesh at the same or lower clock speed as the processing elements (PEs). Recently, a new source synchronous ring-based NoC architecture has been proposed, which runs significantly faster than the PEs and offers a significantly higher bandwidth and lower communication latency. The authors implement the NoC topology as a mesh of rings, which occupies the same area as that of a mesh. In this work, we evaluate two alternate source synchronous ring-based NoC topologies called the ring of stars (ROS) and the spine with rings (SWR), which occupy a much lower area, and are able to provide better performance in terms of communication latency compared to a state of the art mesh. In our proposed topologies, the clock and the data NoC are routed in parallel, yielding a fast, synchronous, robust design. Our design allows the PEs to extract a low jitter clock from the high speed ring clock by division. The area and performance of these ring-based NoC topologies is quantified. Experimental results on synthetic traffic show that the new ring-based NoC designs can provide significantly lower latency (upto 4.6×) compared to a state of the art mesh. The proposed floorplan-friendly topologies use fewer buffers (upto 50% less) and lower wire length (upto 64.3% lower) compared to the mesh. Depending on the performance and the area desired, a NoC designer can select among the topologies presented.
  • Keywords
    Art; Clocks; Joining processes; Ports (Computers); Synchronization; Topology; Tornadoes;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Design, Automation & Test in Europe Conference & Exhibition (DATE), 2013
  • Conference_Location
    Grenoble, France
  • ISSN
    1530-1591
  • Print_ISBN
    978-1-4673-5071-6
  • Type

    conf

  • DOI
    10.7873/DATE.2013.214
  • Filename
    6513660