DocumentCode :
2147277
Title :
Robust Parameter Design Via Bayesian Generalizedlinear Models
Author :
Wang, Jian-Jun ; Ma, Yi-zhong
Author_Institution :
Dept. of Manage. Eng., Nanjing Univ. of Sci. & Technol., Nanjing, China
fYear :
2009
fDate :
20-22 Sept. 2009
Firstpage :
1
Lastpage :
4
Abstract :
Generalized linear models (GLM) are discussed in this paper, which are used widely in the field of robust parameter design involving non-normal response variables. As for the estimation problems such as data over-dispersion which exist generally in robust parameter design, the Markov chain Monte Carlo (MCMC) approach based on adaptive rejection metropolis sampling algorithm is brought forward to simulate dynamically the Markov chain of the parameter´s posterior distribution of the GLM. Furthermore, the parameters´ Bayesian estimation and significant factors of the GLM will be given when relative objective Jeffreys´ prior distribution is used for the parameters of the GLM. Practical industrial experiment data is utilized to simulate and analyze the Bayesian GLM by the SAS software. The results demonstrate that the Bayesian GLM performs more reliable and valid in parameter robust estimation and significant factors identification than the conventional GLM.
Keywords :
Bayes methods; Markov processes; Monte Carlo methods; parameter estimation; Bayesian estimation; Jeffrey prior distribution; Markov chain Monte Carlo approach; SAS software; adaptive rejection metropolis sampling algorithm; generalized linear models; non-normal response variables; robust parameter design; Analytical models; Arm; Bayesian methods; Data engineering; Design engineering; Engineering management; Noise robustness; Parameter estimation; Sampling methods; Technology management;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Management and Service Science, 2009. MASS '09. International Conference on
Conference_Location :
Wuhan
Print_ISBN :
978-1-4244-4638-4
Electronic_ISBN :
978-1-4244-4639-1
Type :
conf
DOI :
10.1109/ICMSS.2009.5303795
Filename :
5303795
Link To Document :
بازگشت