• DocumentCode
    2147358
  • Title

    Hyperspectral data classification using classifier overproduction and fusion strategies

  • Author

    Kuo, Bor-Chen ; Pai, Chia-Hao ; Sheu, Tian-Wei ; Chen, Guey-Shya

  • Author_Institution
    Graduate Sch. of Educ. Meas. & Stat., Nat. Taichung Teachers Coll., Taiwan
  • Volume
    5
  • fYear
    2004
  • fDate
    20-24 Sept. 2004
  • Firstpage
    2937
  • Abstract
    A new hybrid algorithm based on bagging and random subspace methods is proposed for improving hyperspectral data classification problem. The effects of using original data and transformed data in bagging, random subspace and the proposed algorithm are also explored. Real data experiment result shows that the proposed method performs well in both original and NWFE feature spaces.
  • Keywords
    data acquisition; feature extraction; image classification; remote sensing; sensor fusion; NWFE feature spaces; bagging; classifier overproduction; fusion strategies; hyperspectral data classification; multiple classifier system; random subspace methods; Bagging; Boosting; Educational institutions; Extraterrestrial phenomena; Feature extraction; Hyperspectral imaging; Principal component analysis; Statistics; Training data; Voting;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Geoscience and Remote Sensing Symposium, 2004. IGARSS '04. Proceedings. 2004 IEEE International
  • Print_ISBN
    0-7803-8742-2
  • Type

    conf

  • DOI
    10.1109/IGARSS.2004.1370310
  • Filename
    1370310