DocumentCode :
2152466
Title :
Nonlinear HEMT modeling using artificial neural network technique
Author :
Jianjun Gao ; Lei Zhang ; Jianjun Xu ; Qi-Jun Zhang
Author_Institution :
Dept. of Electron., Carleton Univ., Ottawa, Ont., Canada
fYear :
2005
fDate :
12-17 June 2005
Abstract :
An improved nonlinear modeling technique for high electron mobility transistors (HEMT) based on the combination of the conventional equivalent circuit and artificial neural network (ANN) modeling techniques is presented. Effective initial values of the artificial neural network for each nonlinear element in HEMT model are evaluated from a semi-analytical parameter extraction technique. A multi-goal DC, S-parameter, and harmonic (DC/S/HB) training process has been formulated. Good agreement is obtained between the model and data of the DC, S-parameter, and harmonic performance for a 200μm gate width 0.25μm PHEMT (FHX04LG) over a wide range of bias points.
Keywords :
S-parameters; electronic engineering computing; equivalent circuits; high electron mobility transistors; neural nets; semiconductor device models; 0.25 micron; 200 micron; DC performance; PHEMT modeling; S-parameter performance; artificial neural networks; equivalent circuits; harmonic performance; high electron mobility transistors; nonlinear HEMT modeling; semi-analytical parameter extraction; Artificial neural networks; Equivalent circuits; HEMTs; MODFETs; Neural networks; Neurons; Nonlinear equations; Parameter extraction; Scattering parameters; Table lookup;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Microwave Symposium Digest, 2005 IEEE MTT-S International
ISSN :
01490-645X
Print_ISBN :
0-7803-8845-3
Type :
conf
DOI :
10.1109/MWSYM.2005.1516631
Filename :
1516631
Link To Document :
بازگشت