DocumentCode
2154606
Title
A CMOS 21-48GHz fractional-N synthesizer employing ultra-wideband injection-locked frequency multipliers
Author
Li, Aoxue ; Shiyuan Zheng ; Jun Yin ; Luong, Howard C. ; Xun Luo
Author_Institution
Dept. of Electron. & Comput. Eng., Hong Kong Univ. of Sci. & Technol., Hong Kong, China
fYear
2013
fDate
22-25 Sept. 2013
Firstpage
1
Lastpage
4
Abstract
Higher-order LC tanks with proper design parameters are proposed to widen the phase response to enhance the frequency locking range of mm-Wave injection-locked frequency multipliers (ILFMs). Employing a chain of such ILFMs at the output, a complete ultra-wideband fractional-N frequency synthesizer is demonstrated. Fabricated using a 65nm CMOS process, the synthesizer prototype measures a continuous output frequency tuning range of 80.2% from 20.6GHz to 48.2GHz when locked to a 4.5GHz to 6.1GHz fractional-N PLL with excellent phase noise <; -107dBc/Hz at 1MHz offset while consuming 148 mW.
Keywords
CMOS analogue integrated circuits; frequency multipliers; phase locked loops; CMOS fractional-N synthesizer; ILFMs; SHI-PLL; design parameters; fractional-N PLL; frequency 20.6 GHz to 48.2 GHz; frequency 4.5 GHz to 6.1 GHz; frequency locking range; higher-order LC tanks; mm-wave injection-locked frequency multipliers; phase response; power 148 mW; size 65 nm; synthesizer prototype; ultra-wideband fractional-N frequency synthesizer; ultra-wideband injection-locked frequency multipliers; CMOS integrated circuits; CMOS technology; Frequency measurement; Frequency synthesizers; Phase locked loops; Phase noise; Resonant frequency;
fLanguage
English
Publisher
ieee
Conference_Titel
Custom Integrated Circuits Conference (CICC), 2013 IEEE
Conference_Location
San Jose, CA
Type
conf
DOI
10.1109/CICC.2013.6658411
Filename
6658411
Link To Document