• DocumentCode
    2156292
  • Title

    Proteome Profiling without Selection Bias

  • Author

    Barla, Annalisa ; Irler, Bettina ; Merler, Stefano ; Jurman, Giuseppe ; Paoli, Silvano ; Furlanello, Cesare

  • Author_Institution
    ITC, Trento
  • fYear
    0
  • fDate
    0-0 0
  • Firstpage
    941
  • Lastpage
    946
  • Abstract
    In this paper, we present a method for predictive profiling of mass spectrometry data. The method integrates a spectra preprocessing pipeline with a complete validation setup aimed at identifying the discriminating peaks and at providing an unbiased estimate of the predictive classification error, based on SVM classifiers and on entropy-based RFE procedure. A particular emphasis is placed upon avoiding selection bias effects throughout all the analysis steps, from preprocessing to peak importance ranking
  • Keywords
    biology computing; entropy; mass spectroscopic chemical analysis; molecular biophysics; proteins; support vector machines; SVM classifiers; entropy-based RFE procedure; mass spectrometry; peak importance ranking; predictive classification error; predictive profiling; proteome profiling; selection bias; spectra preprocessing pipeline; Biomarkers; Data preprocessing; Grid computing; Ionization; Mass spectroscopy; Pipelines; Proposals; Proteomics; Support vector machine classification; Support vector machines;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Computer-Based Medical Systems, 2006. CBMS 2006. 19th IEEE International Symposium on
  • Conference_Location
    Salt Lake City, UT
  • ISSN
    1063-7125
  • Print_ISBN
    0-7695-2517-1
  • Type

    conf

  • DOI
    10.1109/CBMS.2006.134
  • Filename
    1647691