DocumentCode :
2156292
Title :
Proteome Profiling without Selection Bias
Author :
Barla, Annalisa ; Irler, Bettina ; Merler, Stefano ; Jurman, Giuseppe ; Paoli, Silvano ; Furlanello, Cesare
Author_Institution :
ITC, Trento
fYear :
0
fDate :
0-0 0
Firstpage :
941
Lastpage :
946
Abstract :
In this paper, we present a method for predictive profiling of mass spectrometry data. The method integrates a spectra preprocessing pipeline with a complete validation setup aimed at identifying the discriminating peaks and at providing an unbiased estimate of the predictive classification error, based on SVM classifiers and on entropy-based RFE procedure. A particular emphasis is placed upon avoiding selection bias effects throughout all the analysis steps, from preprocessing to peak importance ranking
Keywords :
biology computing; entropy; mass spectroscopic chemical analysis; molecular biophysics; proteins; support vector machines; SVM classifiers; entropy-based RFE procedure; mass spectrometry; peak importance ranking; predictive classification error; predictive profiling; proteome profiling; selection bias; spectra preprocessing pipeline; Biomarkers; Data preprocessing; Grid computing; Ionization; Mass spectroscopy; Pipelines; Proposals; Proteomics; Support vector machine classification; Support vector machines;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer-Based Medical Systems, 2006. CBMS 2006. 19th IEEE International Symposium on
Conference_Location :
Salt Lake City, UT
ISSN :
1063-7125
Print_ISBN :
0-7695-2517-1
Type :
conf
DOI :
10.1109/CBMS.2006.134
Filename :
1647691
Link To Document :
بازگشت