DocumentCode :
2158584
Title :
Sphere packing for clustering sets of vectors in feature space
Author :
García-García, Darío ; Santos-Rodríguez, Raúl
Author_Institution :
Signal Theor. & Commun. Dept., Univ. Carlos III de Madrid, Leganes, Spain
fYear :
2011
fDate :
22-27 May 2011
Firstpage :
2092
Lastpage :
2095
Abstract :
We propose a method for clustering sets of vectors by packing spheres learnt to represent the support of the different sets. The algorithm can work efficiently in a kernel-induced feature space by using the kernel trick. Experimental results on synthetic and real-world datasets show that the proposal is competitive with the state of the art.
Keywords :
feature extraction; pattern clustering; set theory; clustering sets; kernel-induced feature space; real-world datasets; sphere packing; Clustering algorithms; Estimation; Hidden Markov models; Kernel; Optimization; Robustness; Support vector machines; Clustering; kernel methods; sequences;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech and Signal Processing (ICASSP), 2011 IEEE International Conference on
Conference_Location :
Prague
ISSN :
1520-6149
Print_ISBN :
978-1-4577-0538-0
Electronic_ISBN :
1520-6149
Type :
conf
DOI :
10.1109/ICASSP.2011.5946738
Filename :
5946738
Link To Document :
بازگشت