• DocumentCode
    2159059
  • Title

    Joint dictionary learning and topic modeling for image clustering

  • Author

    Li, Lingbo ; Zhou, Mingyuan ; Wang, Eric ; Carin, Lawrence

  • Author_Institution
    Dept. of Electr. & Comput. Eng., Duke Univ., Durham, NC, USA
  • fYear
    2011
  • fDate
    22-27 May 2011
  • Firstpage
    2168
  • Lastpage
    2171
  • Abstract
    A new Bayesian model is proposed, integrating dictionary learning and topic modeling into a unified framework. The model is applied to cluster multiple images, and a subset of the images may be annotated. Example results are presented on the MNIST digit data and on the Microsoft MSRC multi-scene image data. These results reveal the working mechanisms of the model and demonstrate state-of-the-art performance.
  • Keywords
    belief networks; image processing; learning (artificial intelligence); Bayesian model; MNIST digit data; Microsoft MSRC multiscene image data; image clustering; joint dictionary learning; topic modeling; Bayesian methods; Computational modeling; Computer vision; Dictionaries; Feature extraction; Image coding; Pattern recognition; Bayesian; annotating; dictionary learning; image clustering; sparse coding; topic modeling;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Acoustics, Speech and Signal Processing (ICASSP), 2011 IEEE International Conference on
  • Conference_Location
    Prague
  • ISSN
    1520-6149
  • Print_ISBN
    978-1-4577-0538-0
  • Electronic_ISBN
    1520-6149
  • Type

    conf

  • DOI
    10.1109/ICASSP.2011.5946757
  • Filename
    5946757