DocumentCode
2160220
Title
Parallel implementation of Multi-dimensional Ensemble Empirical Mode Decomposition
Author
Chang, Li-Wen ; Lo, Men-Tzung ; Anssari, Nasser ; Hsu, Ke-Hsin ; Huang, Norden E. ; Hwu, Wen-Mei W.
Author_Institution
Univ. of Illinois at Urbana-Champaign, Urbana, IL, USA
fYear
2011
fDate
22-27 May 2011
Firstpage
1621
Lastpage
1624
Abstract
In this paper, we propose and evaluate two parallel implementations of Multi-dimensional Ensemble Empirical Mode Decomposition (MEEMD) for multi-core (CPU) and many-core (GPU) architectures. Relative to a sequential C implementation, our double precision GPU implementation, using the CUDA programming model, achieves up to 48.6x speedup on NVIDIA Tesla C2050. Our multi-core CPU implementation, using the OpenMP programming model, achieves up to 11.3x speedup on two octal-core Intel Xeon x7550 CPUs.
Keywords
computer graphic equipment; coprocessors; multiprocessing systems; parallel architectures; parallel programming; CUDA programming model; NVIDIA Tesla C2050; OpenMP programming model; double precision GPU implementation; many-core architecture; multicore CPU implementation; multicore architecture; multidimensional ensemble empirical mode decomposition; octal-core Intel Xeon CPU; parallel implementation; sequential C implementation; Graphics processing unit; Instruction sets; Interpolation; Parallel processing; Programming; Spline; CUDA; GPGPU; Multi-dimensional Ensemble Empirical Mode Decomposition; OpenMP;
fLanguage
English
Publisher
ieee
Conference_Titel
Acoustics, Speech and Signal Processing (ICASSP), 2011 IEEE International Conference on
Conference_Location
Prague
ISSN
1520-6149
Print_ISBN
978-1-4577-0538-0
Electronic_ISBN
1520-6149
Type
conf
DOI
10.1109/ICASSP.2011.5946808
Filename
5946808
Link To Document