• DocumentCode
    2160220
  • Title

    Parallel implementation of Multi-dimensional Ensemble Empirical Mode Decomposition

  • Author

    Chang, Li-Wen ; Lo, Men-Tzung ; Anssari, Nasser ; Hsu, Ke-Hsin ; Huang, Norden E. ; Hwu, Wen-Mei W.

  • Author_Institution
    Univ. of Illinois at Urbana-Champaign, Urbana, IL, USA
  • fYear
    2011
  • fDate
    22-27 May 2011
  • Firstpage
    1621
  • Lastpage
    1624
  • Abstract
    In this paper, we propose and evaluate two parallel implementations of Multi-dimensional Ensemble Empirical Mode Decomposition (MEEMD) for multi-core (CPU) and many-core (GPU) architectures. Relative to a sequential C implementation, our double precision GPU implementation, using the CUDA programming model, achieves up to 48.6x speedup on NVIDIA Tesla C2050. Our multi-core CPU implementation, using the OpenMP programming model, achieves up to 11.3x speedup on two octal-core Intel Xeon x7550 CPUs.
  • Keywords
    computer graphic equipment; coprocessors; multiprocessing systems; parallel architectures; parallel programming; CUDA programming model; NVIDIA Tesla C2050; OpenMP programming model; double precision GPU implementation; many-core architecture; multicore CPU implementation; multicore architecture; multidimensional ensemble empirical mode decomposition; octal-core Intel Xeon CPU; parallel implementation; sequential C implementation; Graphics processing unit; Instruction sets; Interpolation; Parallel processing; Programming; Spline; CUDA; GPGPU; Multi-dimensional Ensemble Empirical Mode Decomposition; OpenMP;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Acoustics, Speech and Signal Processing (ICASSP), 2011 IEEE International Conference on
  • Conference_Location
    Prague
  • ISSN
    1520-6149
  • Print_ISBN
    978-1-4577-0538-0
  • Electronic_ISBN
    1520-6149
  • Type

    conf

  • DOI
    10.1109/ICASSP.2011.5946808
  • Filename
    5946808