DocumentCode :
2160606
Title :
Scale hyperparameter estimation for GGMRF prior models with application to SPECT images
Author :
López, A. ; Molina, R. ; Katsaggelos, Aggelos K.
Author_Institution :
Departamento de Lenguajes y Sistemas Informaticos, Granada Univ., Spain
Volume :
2
fYear :
2002
fDate :
2002
Firstpage :
521
Abstract :
In this work we develop a Bayesian reconstruction method for SPECT (single photon emission computed tomography) images, using as prior GGMRF (generalized Gaussian Markov random fields) distributions and estimating the scale hyperparameter following the evidence analysis. Preconditioning methods are used to estimate this hyperparameter and the approximations used are compared on synthetic images.
Keywords :
Bayes methods; Gaussian distribution; Markov processes; image reconstruction; image resolution; medical image processing; parameter estimation; single photon emission computed tomography; Bayesian reconstruction method; GGMRF prior models; SPECT images; evidence analysis; generalized Gaussian Markov random fields; preconditioning methods; scale hyperparameter estimation; single photon emission computed tomography; Application software; Bayesian methods; Degradation; Distributed computing; Image analysis; Image reconstruction; Markov random fields; Optical computing; Reconstruction algorithms; Single photon emission computed tomography;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Digital Signal Processing, 2002. DSP 2002. 2002 14th International Conference on
Print_ISBN :
0-7803-7503-3
Type :
conf
DOI :
10.1109/ICDSP.2002.1028142
Filename :
1028142
Link To Document :
بازگشت