DocumentCode :
2162615
Title :
Estimation of symmetric chi-square divergence for point processes
Author :
Park, Il ; Seth, Sohan ; Rao, Murali ; Príncipe, José C.
Author_Institution :
Dept. of Biomed. Eng., Univ. of Florida, Gainesville, FL, USA
fYear :
2011
fDate :
22-27 May 2011
Firstpage :
2016
Lastpage :
2019
Abstract :
This paper addresses the estimation of symmetric χ2-divergence between two point processes. We propose a novel approach by, first, mapping the space of spike trains in an appropriate functional space, and then, estimating the divergence in this functional space using a least square regression approach. We compare the proposed approach with other available methods on simulated data, and discuss its pros and cons.
Keywords :
least squares approximations; regression analysis; statistical analysis; functional space; least square regression approach; point processes; spike trains; symmetric chi-square divergence estimation; Estimation; IEEE Potentials; Kernel; Probability; Testing; Timing; Point process; hypothesis testing; kernel method; spike train; symmetric chi-square divergence;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech and Signal Processing (ICASSP), 2011 IEEE International Conference on
Conference_Location :
Prague
ISSN :
1520-6149
Print_ISBN :
978-1-4577-0538-0
Electronic_ISBN :
1520-6149
Type :
conf
DOI :
10.1109/ICASSP.2011.5946907
Filename :
5946907
Link To Document :
بازگشت