DocumentCode :
2164125
Title :
Automatic video annotation via Hierarchical Topic Trajectory Model considering cross-modal correlations
Author :
Nakano, Takuho ; Kimura, Akisato ; Kameoka, Hirokazu ; Miyabe, Shigeki ; Sagayama, Shigeki ; Ono, Nobutaka ; Kashino, Kunio ; Nishimoto, Takuya
Author_Institution :
Grad. Sch. of Inf. Sci. & Technol., Univ. of Tokyo, Tokyo, Japan
fYear :
2011
fDate :
22-27 May 2011
Firstpage :
2380
Lastpage :
2383
Abstract :
We propose a new statistical model, named Hierarchical Topic Trajectory Model (HTTM), for acquiring a dynamically changing topic model that represents the relationship between video frames and associated text labels. Model parameter estimation, annotation and retrieval can be executed within a unified framework with a few computation. It is also easy to add new modals such as audio signal and geotags. Preliminary experiments on video annotation task with manually annotated video dataset indicate that our proposed method can improve the annotation accuracy.
Keywords :
parameter estimation; statistical analysis; video retrieval; HTTM; annotated video dataset; associated text labels; audio signal; automatic video annotation; cross-modal correlations; geotags; hierarchical topic trajectory model; parameter estimation; statistical model; video frames; Accuracy; Computational modeling; Correlation; Estimation; Feature extraction; Hidden Markov models; Semantics; Video annotation; canonical correlation analysis; generative approach; hidden Markov model; topic model;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech and Signal Processing (ICASSP), 2011 IEEE International Conference on
Conference_Location :
Prague
ISSN :
1520-6149
Print_ISBN :
978-1-4577-0538-0
Electronic_ISBN :
1520-6149
Type :
conf
DOI :
10.1109/ICASSP.2011.5946962
Filename :
5946962
Link To Document :
بازگشت