DocumentCode :
2170232
Title :
Sparse variable reduced rank regression via Stiefel optimization
Author :
Ulfarsson, M.O. ; Solo, V.
Author_Institution :
University of Iceland, Dept. Electrical Eng., Reykjavik, ICELAND
fYear :
2011
fDate :
22-27 May 2011
Firstpage :
3892
Lastpage :
3895
Abstract :
Reduced rank regression (RRR) has found application in various fields of signal processing. In this paper we propose a novel extension of the RRR model which we call sparse variable reduced rank regression (svRRR). By using a vector l1 penalty we remove variables completely from the RRR. The proposed estimation algorithm involves optimization on the Stiefel manifold and we illustrate it both on a simulated and a real functional magnetic resonance imaging (fMRI) data set.
Keywords :
Hafnium; Loading; Manifolds; Optimization; Signal processing; Signal processing algorithms; Tuning; Reduced rank regression; Stiefel manifold; optimization; sparsity;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech and Signal Processing (ICASSP), 2011 IEEE International Conference on
Conference_Location :
Prague, Czech Republic
ISSN :
1520-6149
Print_ISBN :
978-1-4577-0538-0
Electronic_ISBN :
1520-6149
Type :
conf
DOI :
10.1109/ICASSP.2011.5947202
Filename :
5947202
Link To Document :
بازگشت