DocumentCode :
2170336
Title :
An application of particle filter for FDI oriented change detection and bounded parameter estimation
Author :
Cofre, Patricio E. ; Cipriano, Aldo
Author_Institution :
Electr. Eng. Dept., Pontificia Univ. Catolica de Chile, Santiago, Chile
fYear :
2007
fDate :
2-5 July 2007
Firstpage :
422
Lastpage :
426
Abstract :
In their original formulations, state estimation schemes such as Kalman Filter, do not allow the incorporation of prior information on their physical bounds. This results in a certain probability of generating estimates that are physically impossible. Also, the Gaussian assumption in conventional schemes produces a trade-off between estimation error and estimation speed. This paper presents a solution based on a particle filter for which a bounded a priori parameter distribution is chosen. It is shown that a Beta distribution with hard bounds and adaptive estimation variance can overcome both drawbacks, thus achieving a lower fault detection time delay without increasing the estimation error, compared with the Extended Kalman Filter.
Keywords :
Gaussian processes; fault diagnosis; particle filtering (numerical methods); state estimation; statistical distributions; FDI oriented change detection; Gaussian assumption; Kalman filter; adaptive estimation variance; beta distribution; bounded parameter estimation; fault detection time delay; particle filter; priori parameter distribution; state estimation scheme; Estimation error; Fault detection; Kalman filters; Parameter estimation; Particle filters; State estimation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Control Conference (ECC), 2007 European
Conference_Location :
Kos
Print_ISBN :
978-3-9524173-8-6
Type :
conf
Filename :
7068891
Link To Document :
بازگشت