DocumentCode :
2171413
Title :
On selecting the hyperparameters of the DPM models for the density estimation of observation errors
Author :
Rabaoui, Asma ; Viandier, Nicolas ; Marais, Juliette ; Duflos, Emmanuel
Author_Institution :
Ecole Centrale de Lille, Villeneuve-d´´Ascq, France
fYear :
2011
fDate :
22-27 May 2011
Firstpage :
4092
Lastpage :
4095
Abstract :
The Dirichlet Process Mixture (DPM) models represent an attractive approach to modeling latent distributions parametrically. In DPM models the Dirichlet process (DP) is applied especially when the distribution of latent parameters is to be considered as multimodal. DPMs allow for uncertainty in the choice of parametric forms and in the number of mixing components (clusters). The parameters of a DP include the precision a and the base probability measure G0(μ, Σ). In most applications, the choice of priors and posteriors computation for the hyperparameters (α, μ, Σ) clearly influences inferences about the level of clustering in the mixture. This is the main focus of this paper. We consider the problem of density estimation of an observation noise distribution in a dynamic nonlinear model from a Bayesian nonparametric view-point. Our approach is illustrated in a real-world data analysis task dealing with the estimation of pseudorange errors in a GNSS based localization context.
Keywords :
Bayes methods; parameter estimation; pattern clustering; statistical distributions; Bayesian nonparametric viewpoint; DPM model; Dirichlet process mixture model; GNSS based localization context; base probability measure; density estimation; dynamic nonlinear model; hyperparameter selection; mixing component; observation error; observation noise distribution; pseudorange error; real world data analysis; Bayesian methods; Biological system modeling; Computational modeling; Estimation; Global Navigation Satellite Systems; Satellites; Shape; Bayesian nonparametrics; Density estimation; Dirichlet Process; Hyperparameters; Mixture models;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech and Signal Processing (ICASSP), 2011 IEEE International Conference on
Conference_Location :
Prague
ISSN :
1520-6149
Print_ISBN :
978-1-4577-0538-0
Electronic_ISBN :
1520-6149
Type :
conf
DOI :
10.1109/ICASSP.2011.5947252
Filename :
5947252
Link To Document :
بازگشت