DocumentCode
21726
Title
Entropic Measures of EEG Complexity in Alzheimer´s Disease Through a Multivariate Multiscale Approach
Author
Labate, Demetrio ; La Foresta, F. ; Morabito, Giacomo ; Palamara, Isabella ; Morabito, Francesco Carlo
Author_Institution
Dept. of DICEAM, Mediterranean Univ. of Reggio Calabria, Reggio Calabria, Italy
Volume
13
Issue
9
fYear
2013
fDate
Sept. 2013
Firstpage
3284
Lastpage
3292
Abstract
Alzheimer´s disease (AD) impact is rapidly growing in western countries. The unavoidable progression of the disease, call for reliable ways to diagnose the AD in its early stages. Recently, it has been shown that the electroencephalography (EEG) complexity analysis could be used to predict the conversion from mild cognitive impairment (MCI) to AD. Despite the EEG analysis does not achieve yet the required clinical performance in terms of both sensitivity and specificity to be accepted as a clinically reliable technique of screening, the researchers count on the easiness and the non-invasiveness of the EEG measuring system. The aim of this paper is to analyze the efficacy of entropic complexity measures as a possible bio-marker to distinguish among the brain states related to the AD patients and MCI subjects from normal healthy elderly. The research is carried out on an experimental database. Three different emerging measures of complexity are compared, namely, permutation entropy, sample entropy, and Lempel-Ziv complexity. Because time series derived from biological systems show structures on multiple spatial-temporal scales and there exists a significant inter-channel correlation among the EEG channels, a multiscale multivariate approach is also implemented. Limited to the analyzed data, the results show that the severity of the AD reflects in the EEG dynamic complexity leaving the hope of early diagnosis based on simple EEG.
Keywords
diseases; electroencephalography; entropy; medical signal processing; statistical analysis; AD patients; Alzheimer disease; EEG complexity entropic measures; Lempel-Ziv complexity; MCI subjects; biomarker; brain states; complexity analysis; early diagnosis; electroencephalography; interchannel correlation; mild cognitive impairment; multivariate multiscale approach; noninvasivene EEG measuring system; normal healthy elderly subjects; permutation entropy; sample entropy; spatial-temporal scales; Alzheimer´s disease; Lempel–Ziv complexity; complexity; multiscale and multivariate entropy; permutation entropy; sample entropy;
fLanguage
English
Journal_Title
Sensors Journal, IEEE
Publisher
ieee
ISSN
1530-437X
Type
jour
DOI
10.1109/JSEN.2013.2271735
Filename
6552994
Link To Document