DocumentCode :
2172807
Title :
Variational frameworks for DT-MRI estimation, regularization and visualization
Author :
Tschumperlé, David ; Deriche, Rachid
Author_Institution :
Odyssee Lab., INRIA Sophia-Antipolis, France
fYear :
2003
fDate :
13-16 Oct. 2003
Firstpage :
116
Abstract :
We address three crucial issues encountered in DT-MRI (diffusion tensor magnetic resonance imaging): diffusion tensor estimation, regularization and fiber bundle visualization. We first review related algorithms existing in the literature and propose then alternative variational formalisms that lead to new and improved schemes, thanks to the preservation of important tensor constraints (positivity, symmetry). We illustrate how our complete DT-MRI processing pipeline can be successfully used to construct and draw fiber bundles in the white matter of the brain, from a set of noisy raw MRl images.
Keywords :
biomedical MRI; data visualisation; image resolution; tensors; DT-MRI; MRl images; diffusion tensor estimation; diffusion tensor magnetic resonance imaging; fiber bundle visualization; human brain; processing pipeline; regularization process; variational framework; Biomedical imaging; Diffusion tensor imaging; Magnetic noise; Magnetic resonance imaging; Motion measurement; Neurons; Pipelines; Symmetric matrices; Tensile stress; Visualization;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer Vision, 2003. Proceedings. Ninth IEEE International Conference on
Conference_Location :
Nice, France
Print_ISBN :
0-7695-1950-4
Type :
conf
DOI :
10.1109/ICCV.2003.1238323
Filename :
1238323
Link To Document :
بازگشت