• DocumentCode
    2173196
  • Title

    Kernel-based parametric validity index for assessing clusters from microarray gene expression data

  • Author

    Fa, Rui ; Nandi, Asoke K.

  • Author_Institution
    Dept. of Electr. Eng. & Electron., Univ. of Liverpool, Liverpool, UK
  • fYear
    2012
  • fDate
    23-26 Sept. 2012
  • Firstpage
    1
  • Lastpage
    6
  • Abstract
    In this paper, we develop a kernel-based parametric validity index (KPVI), which not only inherits robust feature from the newly proposed PVI, but possesses extra superiority inherited from the kernel method. The KPVI employs the kernel method to calculate both the inter-cluster and the intra cluster dissimilarities. Furthermore, we develop several rules to guide the selection of parameter values by examining the dissimilarity densities of different datasets such that the maximal appropriate values of the parameters for individual dataset can be obtained. We evaluate the new KPVI for assessing five clustering algorithms in both synthetic and real gene expression datasets. The experimental results support that the KPVI has the most superior performance among the existing validation algorithms, even better than the PVI.
  • Keywords
    biology computing; pattern clustering; KPVI; cluster assessment; clustering algorithms; dataset dissimilarity density; intercluster dissimilarity; intracluster dissimilarity; kernel method; kernel-based parametric validity index; microarray gene expression data; parameter values selection; real gene expression datasets; synthetic gene expression datasets; Clustering algorithms; Gene expression; Indexes; Kernel; Noise; Noise level; Robustness; clustering validation; gene expression data; kernel method;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Machine Learning for Signal Processing (MLSP), 2012 IEEE International Workshop on
  • Conference_Location
    Santander
  • ISSN
    1551-2541
  • Print_ISBN
    978-1-4673-1024-6
  • Electronic_ISBN
    1551-2541
  • Type

    conf

  • DOI
    10.1109/MLSP.2012.6349780
  • Filename
    6349780