DocumentCode :
2173457
Title :
Multiclass spectral clustering
Author :
Yu, Stella X. ; Shi, Jianbo
Author_Institution :
Robotics Inst., Carnegie Mellon Univ., Pittsburgh, PA, USA
fYear :
2003
fDate :
13-16 Oct. 2003
Firstpage :
313
Abstract :
We propose a principled account on multiclass spectral clustering. Given a discrete clustering formulation, we first solve a relaxed continuous optimization problem by eigen-decomposition. We clarify the role of eigenvectors as a generator of all optimal solutions through orthonormal transforms. We then solve an optimal discretization problem, which seeks a discrete solution closest to the continuous optima. The discretization is efficiently computed in an iterative fashion using singular value decomposition and nonmaximum suppression. The resulting discrete solutions are nearly global-optimal. Our method is robust to random initialization and converges faster than other clustering methods. Experiments on real image segmentation are reported.
Keywords :
convergence; eigenvalues and eigenfunctions; image segmentation; iterative methods; optimisation; pattern clustering; realistic images; singular value decomposition; continuous optima; discrete clustering formulation; eigen-decomposition; eigenvectors; multiclass spectral clustering; nonmaximum suppression; optimal discretization problem; orthonormal transforms; random initialization; real image segmentation; relaxed continuous optimization problem; singular value decomposition; Clustering methods; Computer vision; Discrete transforms; Image converters; Image segmentation; Information science; Karhunen-Loeve transforms; Robots; Robustness; Singular value decomposition;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer Vision, 2003. Proceedings. Ninth IEEE International Conference on
Conference_Location :
Nice, France
Print_ISBN :
0-7695-1950-4
Type :
conf
DOI :
10.1109/ICCV.2003.1238361
Filename :
1238361
Link To Document :
بازگشت