Title :
Using Virtual Clusters to Decouple Computation and Data Management in High Throughput Analysis Applications
Author :
Leo, Simone ; Anedda, Paolo ; Gaggero, Massimo ; Zanetti, Gianluigi
Author_Institution :
CRS4, Pula, Italy
Abstract :
The rapid growth in the throughput to cost ratio of experimental data production technologies is generating vast amounts of scientific data, often organized into "large" objects (genomes, bio-images) exhibiting complex internal structures. Frequently, datasets must be shared between multiple research groups interested not only in the final results, but also in how they are produced. The practical difficulties of moving terabytes or more of data across the network, as well as the need to maintain a clear separation between software stack and storage infrastructure, are thus raising interest in the use of virtual clusters for HPC and data intensive applications. In this paper we employ a MapReduce implementation of an image analysis pipeline used by deep sequencing platforms to analyse different virtual cluster scenarios and their impact on system performance.
Keywords :
database management systems; distributed processing; virtual machines; workstation clusters; HPC application; MapReduce; data intensive application; data management; dataset; decouple computation; experimental data production technology; high throughput analysis; image analysis; large object; software stack; storage infrastructure; system performance; throughput-to-cost ratio; virtual clusters; Application software; Bioinformatics; Costs; Genomics; Image analysis; Image sequence analysis; Pipelines; Production; Software maintenance; Throughput;
Conference_Titel :
Parallel, Distributed and Network-Based Processing (PDP), 2010 18th Euromicro International Conference on
Conference_Location :
Pisa
Print_ISBN :
978-1-4244-5672-7
Electronic_ISBN :
1066-6192
DOI :
10.1109/PDP.2010.29