• DocumentCode
    2175385
  • Title

    Electromagnetic design optimization of a low speed Slotted Switched Reluctance Machine using genetic algorithm

  • Author

    Moreau, L. ; Zaïm, M.E. ; Machmoum, M.

  • Author_Institution
    IREENA (Inst. de Rech. en Electrotech. et Electron. de Nantes Atlantique), St. Nazaire, France
  • fYear
    2012
  • fDate
    2-5 Sept. 2012
  • Firstpage
    233
  • Lastpage
    237
  • Abstract
    This paper describes the design of a low speed Slotted Switched Reluctance Machine (SSRM) for wind turbine applications. The modeling and the dimensioning of the machine structure are investigated. Teeth shapes and global design are analyzed by optimizing the mass torque. Dimensions are obtained thanks to a genetic algorithm (GA) associated to the finite element method for the resolution of the electromagnetic equations. The optimization is executed 50 times in order to study convergence and to perform a statistical study on dimensioning parameters.
  • Keywords
    convergence; finite element analysis; genetic algorithms; reluctance machines; statistical analysis; wind turbines; SSRM; convergence study; electromagnetic design optimization; electromagnetic equations; finite element method; genetic algorithm; machine structure dimensioning parameters; machine structure modeling; mass torque optimization; speed slotted switched reluctance machine; statistical study; teeth shapes; wind turbine applications; Genetic algorithms; Histograms; Optimization; Rotors; Switches; Torque; Wind turbines; Genetic algorithms; Reluctance Machine; Wind power generation;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Electrical Machines (ICEM), 2012 XXth International Conference on
  • Conference_Location
    Marseille
  • Print_ISBN
    978-1-4673-0143-5
  • Electronic_ISBN
    978-1-4673-0141-1
  • Type

    conf

  • DOI
    10.1109/ICElMach.2012.6349870
  • Filename
    6349870