Abstract :
A set S ⊂ {0,1}* is sparse if there is a polynomial p such that the number of strings in S of size at most n is at most p(n). All known NP-complete sets, such as SAT, are not sparse. The main result of this paper is that if there is a sparse NP-complete set under many-one reductions, then P = NP. We also show that if there is a sparse NP-complete set under Turing reductions, then the polynomial time hierarchy collapses to Δ2P.