Title :
Polarization-based inverse rendering from a single view
Author :
Miyazaki, Daisuke ; Tan, Robby T. ; Hara, Kenji ; Ikeuchi, Katsushi
Author_Institution :
Dept. of Comput. Sci., Tokyo Univ., Japan
Abstract :
This paper presents a method to estimate geometrical, photometrical, and environmental information of a single-viewed object in one integrated framework under fixed viewing position and fixed illumination direction. These three types of information are important to render a photorealistic image of a real object. Photometrical information represents the texture and the surface roughness of an object, while geometrical and environmental information represent the 3D shape of an object and the illumination distribution, respectively. The proposed method estimates the 3D shape by computing the surface normal from polarization data, calculates the texture of the object from the diffuse only reflection component, determines the illumination directions from the position of the brightest intensity in the specular reflection component, and finally computes the surface roughness of the object by using the estimated illumination distribution.
Keywords :
computer vision; image representation; image texture; realistic images; reflection; rendering (computer graphics); surface roughness; 3D shape; Rahmann method; environmental information; fixed illumination direction; fixed viewing position; geometrical information; illumination distribution; image texture; photometrical information; photorealistic image; polarization-based inverse rendering; reflection; single-viewed object; surface roughness; Distributed computing; Lighting; Photometry; Polarization; Reflection; Rendering (computer graphics); Rough surfaces; Shape; Surface roughness; Surface texture;
Conference_Titel :
Computer Vision, 2003. Proceedings. Ninth IEEE International Conference on
Conference_Location :
Nice, France
Print_ISBN :
0-7695-1950-4
DOI :
10.1109/ICCV.2003.1238455