DocumentCode :
2176268
Title :
Posterior features for template-based ASR
Author :
Soldo, Serena ; -Doss, Mathew Magimai ; Pinto, Joel ; Bourlard, Hervé
Author_Institution :
Idiap Res. Inst., Martigny, Switzerland
fYear :
2011
fDate :
22-27 May 2011
Firstpage :
4864
Lastpage :
4867
Abstract :
This paper investigates the use of phoneme class conditional probabilities as features (posterior features) for template-based ASR. Using 75 words and 600 words task-independent and speaker-independent setup on Phonebook database, we investigate the use of different posterior distribution estimators, different distance measures that are better suited for posterior distributions, and different training data. The reported experiments clearly demonstrate that posterior features are always superior, and generalize better than other classical acoustic features (at the cost of training a posterior distribution estimator).
Keywords :
speech recognition; classical acoustic features; phonebook database; posterior features; speech recognition; template-based ASR; Acoustics; Hidden Markov models; Speech; Speech recognition; Training; Training data; Vocabulary; Speech recognition; posterior features; template-based approach;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech and Signal Processing (ICASSP), 2011 IEEE International Conference on
Conference_Location :
Prague
ISSN :
1520-6149
Print_ISBN :
978-1-4577-0538-0
Electronic_ISBN :
1520-6149
Type :
conf
DOI :
10.1109/ICASSP.2011.5947445
Filename :
5947445
Link To Document :
بازگشت