DocumentCode :
2176925
Title :
Closest-point problems
Author :
Shamos, Michael Ian ; Hoey, Dan
fYear :
1975
fDate :
13-15 Oct. 1975
Firstpage :
151
Lastpage :
162
Abstract :
A number of seemingly unrelated problems involving the proximity of N points in the plane are studied, such as finding a Euclidean minimum spanning tree, the smallest circle enclosing the set, k nearest and farthest neighbors, the two closest points, and a proper straight-line triangulation. For most of the problems considered a lower bound of O(N log N) is shown. For all of them the best currently-known upper bound is O(N2) or worse. The purpose of this paper is to introduce a single geometric structure, called the Voronoi diagram, which can be constructed rapidly and contains all of the relevant proximity information in only linear space. The Voronoi diagram is used to obtain O(N log N) algorithms for all of the problems.
Keywords :
Algorithm design and analysis; Clustering algorithms; Computational geometry; Computer science; Design optimization; Linear programming; Manufacturing; Tree graphs; Upper bound; Wire;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Foundations of Computer Science, 1975., 16th Annual Symposium on
Conference_Location :
USA
ISSN :
0272-5428
Type :
conf
DOI :
10.1109/SFCS.1975.8
Filename :
4567872
Link To Document :
بازگشت