DocumentCode :
2177384
Title :
Dynamic thermal management in 3D multicore architectures
Author :
Coskun, Ayse K. ; Ayala, José L. ; Atienza, David ; Rosing, Tajana Simunic ; Leblebici, Yusuf
Author_Institution :
Comput. Sci. & Eng. Dept. (CSE), Univ. of California, San Diego, CA, USA
fYear :
2009
fDate :
20-24 April 2009
Firstpage :
1410
Lastpage :
1415
Abstract :
Technology scaling has caused the feature sizes to shrink continuously, whereas interconnects, unlike transistors, have not followed the same trend. Designing 3D stack architectures is a recently proposed approach to overcome the power consumption and delay problems associated with the interconnects by reducing the length of the wires going across the chip. However, 3D integration introduces serious thermal challenges due to the high power density resulting from placing computational units on top of each other. In this work, we first investigate how the existing thermal management, power management and job scheduling policies affect the thermal behavior in 3D chips. We then propose a dynamic thermally-aware job scheduling technique for 3D systems to reduce the thermal problems at very low performance cost. Our approach can also be integrated with power management policies to reduce energy consumption while avoiding the thermal hot spots and large temperature variations.
Keywords :
job shop scheduling; thermal management (packaging); 3D multicore architectures; dynamic thermal management; energy consumption; job scheduling; power management; Computer architecture; Delay; Energy consumption; Energy management; Multicore processing; Power system management; Processor scheduling; Thermal management; Transistors; Wires;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Design, Automation & Test in Europe Conference & Exhibition, 2009. DATE '09.
Conference_Location :
Nice
ISSN :
1530-1591
Print_ISBN :
978-1-4244-3781-8
Type :
conf
DOI :
10.1109/DATE.2009.5090885
Filename :
5090885
Link To Document :
بازگشت