DocumentCode :
21774
Title :
VarifocalReader — In-Depth Visual Analysis of Large Text Documents
Author :
Koch, Stephan ; John, Michael ; Worner, Michael ; Muller, A. ; Ertl, Thomas
Author_Institution :
Inst. of Visualization & Interactive Syst., Univ. of Stuttgart, Stuttgart, Germany
Volume :
20
Issue :
12
fYear :
2014
fDate :
Dec. 31 2014
Firstpage :
1723
Lastpage :
1732
Abstract :
Interactive visualization provides valuable support for exploring, analyzing, and understanding textual documents. Certain tasks, however, require that insights derived from visual abstractions are verified by a human expert perusing the source text. So far, this problem is typically solved by offering overview-detail techniques, which present different views with different levels of abstractions. This often leads to problems with visual continuity. Focus-context techniques, on the other hand, succeed in accentuating interesting subsections of large text documents but are normally not suited for integrating visual abstractions. With VarifocalReader we present a technique that helps to solve some of these approaches´ problems by combining characteristics from both. In particular, our method simplifies working with large and potentially complex text documents by simultaneously offering abstract representations of varying detail, based on the inherent structure of the document, and access to the text itself. In addition, VarifocalReader supports intra-document exploration through advanced navigation concepts and facilitates visual analysis tasks. The approach enables users to apply machine learning techniques and search mechanisms as well as to assess and adapt these techniques. This helps to extract entities, concepts and other artifacts from texts. In combination with the automatic generation of intermediate text levels through topic segmentation for thematic orientation, users can test hypotheses or develop interesting new research questions. To illustrate the advantages of our approach, we provide usage examples from literature studies.
Keywords :
data visualisation; learning (artificial intelligence); text analysis; document analysis; focus-context techniques; in-depth visual analysis; intermediate text levels; literary analysis; machine learning techniques; natural language processing; text documents; text mining; varifocalreader; visual abstraction; Data mining; Data visualization; Document handling; Interactive systems; Natural language processing; Navigation; Tag clouds; Text mining; distant reading; document analysis; literary analysis; machine learning; natural language processing; text mining; visual analytics;
fLanguage :
English
Journal_Title :
Visualization and Computer Graphics, IEEE Transactions on
Publisher :
ieee
ISSN :
1077-2626
Type :
jour
DOI :
10.1109/TVCG.2014.2346677
Filename :
6875959
Link To Document :
بازگشت