• DocumentCode
    2177683
  • Title

    Introduction to modeling and generating probabilistic input processes for simulation

  • Author

    Kuhl, Michael E. ; Lada, Emily K. ; Steiger, Natalie M. ; Wagner, Mary Ann ; Wilson, James R.

  • Author_Institution
    Ind. & Syst. Eng. Dept., Rochester Inst. of Technol., Rochester, NY, USA
  • fYear
    2008
  • fDate
    7-10 Dec. 2008
  • Firstpage
    48
  • Lastpage
    61
  • Abstract
    Techniques are presented for modeling and generating the univariate probabilistic input processes that drive many simulation experiments. Emphasis is on the generalized beta distribution family, the Johnson translation system of distributions, and the Bezier distribution family. Also discussed are nonparametric techniques for modeling and simulating time-dependent arrival streams using nonhomogeneous Poisson processes. Public-domain software implementations and current applications are presented for each input-modeling technique. Many of the references include live hyperlinks providing online access to the referenced material.
  • Keywords
    modelling; public domain software; statistical distributions; stochastic processes; Bezier distribution family; Johnson distribution translation system; generalized beta distribution family; input-modeling technique; nonhomogeneous Poisson processes; public-domain software; time-dependent arrival streams; Computational modeling; Histograms; Parameter estimation; Probability distribution; Shape control; Stochastic processes; Synthetic aperture sonar; Systems engineering and theory; Testing; Yield estimation;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Simulation Conference, 2008. WSC 2008. Winter
  • Conference_Location
    Austin, TX
  • Print_ISBN
    978-1-4244-2707-9
  • Electronic_ISBN
    978-1-4244-2708-6
  • Type

    conf

  • DOI
    10.1109/WSC.2008.4736055
  • Filename
    4736055