DocumentCode :
2180900
Title :
Finger-like manipulator driven by antagonistic nickel-titanium shape memory alloy actuators
Author :
Dilibal, Savas ; Engeberg, Erik D.
Author_Institution :
Mechatronics Engineering Department, Gedik University, Istanbul, Turkey
fYear :
2015
fDate :
27-31 July 2015
Firstpage :
152
Lastpage :
157
Abstract :
Shape memory alloy (SMA) actuators generally have a fast response time when heated. However, the return stroke during cooling can be slow and has been a hindrance to the application of SMA actuators in different areas such as robotic hands. Thus, a novel finger-like antagonistic SMA actuator design is presented in this paper. By using different thermal shape setting processes, one SMA actuator was designed to take a curved shape when heated. This actuator was antagonistically coupled to a different actuator that took a straight shape when heated. Thus, alternately heating each actuator caused the finger-like manipulator to flex and extend rapidly. A comparison study was performed between the novel antagonistic design and a single actuator which showed that the both designs applied approximately the same force with the same velocity when flexing. However, the antagonistic design was able to extend, or open, more rapidly with statistical significance. This was demonstrated for 1.5mm, 1.9mm, and 3.0mm SMA actuator diameters.
Keywords :
Actuators; Fingers; Force; Heating; Manipulators; Shape; Wires; SMA actuator; antagonastic SMA manipulator; nickel-titanium; robotic finger; shape memory alloys;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Advanced Robotics (ICAR), 2015 International Conference on
Conference_Location :
Istanbul, Turkey
Type :
conf
DOI :
10.1109/ICAR.2015.7251448
Filename :
7251448
Link To Document :
بازگشت