DocumentCode :
2183372
Title :
Geometrical realization of set systems and probabilistic communication complexity
Author :
Alon, N. ; Frankl, P. ; Rödl, V.
fYear :
1985
fDate :
21-23 Oct. 1985
Firstpage :
277
Lastpage :
280
Abstract :
Let d = d(n) be the minimum d such that for every sequence of n subsets F1, F2, . . . , Fn of {1, 2, . . . , n} there exist n points P1, P2, . . . , Pn and n hyperplanes H1, H2 .... , Hn in Rd such that Pj lies in the positive side of Hi iff j ∈ Fi. Then n/32 ≤ d(n) ≤ (1/2 + 0(1)) ¿ n. This implies that the probabilistic unbounded-error 2-way complexity of almost all the Boolean functions of 2p variables is between p-5 and p, thus solving a problem of Yao and another problem of Paturi and Simon. The proof of (1) combines some known geometric facts with certain probabilistic arguments and a theorem of Milnor from real algebraic geometry.
Keywords :
Boolean functions; Character generation; Complexity theory; Geometry; Mathematics; Upper bound;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Foundations of Computer Science, 1985., 26th Annual Symposium on
Conference_Location :
Portland, OR, USA
ISSN :
0272-5428
Print_ISBN :
0-8186-0644-4
Type :
conf
DOI :
10.1109/SFCS.1985.30
Filename :
4568151
Link To Document :
بازگشت