DocumentCode :
2184490
Title :
Minimum variance estimation with uncertain statistical model
Author :
Calafiore, Giuseppe ; Ghaoui, Laurent El
Author_Institution :
Dipt. di Autom. e Inf., Politecnico di Torino, Italy
Volume :
4
fYear :
2001
fDate :
2001
Firstpage :
3497
Abstract :
We consider the problem of parameter estimation in a linear stochastic model, where the observations are affected by noise with uncertain variance. In particular, we discuss a linear estimator which minimizes a worst-case measure of the a-posteriori covariance of the parameters. The estimate is efficiently computed by means of convex programming, and may be updated with upcoming observations in a recursive setting
Keywords :
convex programming; linear systems; minimax techniques; parameter estimation; stochastic systems; uncertain systems; convex programming; covariance uncertainty; linear systems; minimax technique; minimum variance estimation; optimization; parameter estimation; stochastic systems; uncertain statistical model; Covariance matrix; Gaussian noise; Minimax techniques; Noise measurement; Parameter estimation; Particle measurements; Recursive estimation; Robustness; Stochastic resonance; Vectors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control, 2001. Proceedings of the 40th IEEE Conference on
Conference_Location :
Orlando, FL
Print_ISBN :
0-7803-7061-9
Type :
conf
DOI :
10.1109/.2001.980400
Filename :
980400
Link To Document :
بازگشت