DocumentCode :
2185203
Title :
Estimation and control of industrial processes with particle filters
Author :
Morales-Menendez, Ruben ; De Freitas, Nando ; Poole, David
Author_Institution :
Mechatronics & Autom. Dept., ITESM, Monterrey, Mexico
Volume :
1
fYear :
2003
fDate :
4-6 June 2003
Firstpage :
579
Abstract :
We present a probabilistic approach to state estimation and control of industrial processes. In particular, we adopt a jump Markov linear Gaussian (JMLG) model to describe an industrial heat exchanger. The parameters of this model are identified with the expectation maximisation (EM) algorithm. After identification, particle filtering algorithms are adopted to diagnose, in real-time, the state of operation of the heat exchanger. The particle filtering estimates are then used to drive an automatic control system.
Keywords :
Gaussian processes; Markov processes; filtering theory; heat exchangers; optimisation; probability; process control; state estimation; Markov linear Gaussian model; automatic control system; expectation maximisation algorithm; identification; industrial heat exchanger; industrial process control; particle filtering algorithms; particle filtering estimation; particle filters; probabilistic approach; real time operation; state estimation; Automatic control; Control systems; Electrical equipment industry; Humans; Industrial control; Instruments; Particle measurements; Process control; State estimation; Temperature control;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
American Control Conference, 2003. Proceedings of the 2003
ISSN :
0743-1619
Print_ISBN :
0-7803-7896-2
Type :
conf
DOI :
10.1109/ACC.2003.1239081
Filename :
1239081
Link To Document :
بازگشت