DocumentCode :
2186043
Title :
The multiplicative complexity of quadratic Boolean functions
Author :
Mirwald, R. ; Schnorr, C.P.
fYear :
1987
fDate :
12-14 Oct. 1987
Firstpage :
141
Lastpage :
150
Abstract :
Let the multiplicative complexity L(f) of a boolean function f be the minimal number of ∧-gates that are sufficient to evaluate f by circuits over the basis ∧,⊕,1. We give a polynomial time algorithm which for quadratic boolean forms f=⊕i≠jaijxixj determines L(f) from the coefficients aij. Two quadratic forms f,g have the same complexity L(f) = L(g) iff they are isomorphic by a linear isomorphism. We also determine the multiplicative complexity of pairs of quadratic boolean forms. We give a geometric interpretation to the complexity L(f1,f2) of pairs of quadratic forms.
Keywords :
Boolean functions; Circuits; Complexity theory; Galois fields; Kernel; Linear algebra; Polynomials; Symmetric matrices; Vectors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Foundations of Computer Science, 1987., 28th Annual Symposium on
Conference_Location :
Los Angeles, CA, USA
ISSN :
0272-5428
Print_ISBN :
0-8186-0807-2
Type :
conf
DOI :
10.1109/SFCS.1987.57
Filename :
4568266
Link To Document :
بازگشت