• DocumentCode
    2186709
  • Title

    A normal distribution for tensor-valued random variables to analyze diffusion tensor MRI data

  • Author

    Basser, Peter J. ; Pajevic, Sinisa

  • Author_Institution
    STBB/LIMB/NICHD, Bethesda, MD, USA
  • fYear
    2002
  • fDate
    2002
  • Firstpage
    927
  • Lastpage
    930
  • Abstract
    Diffusion Tensor MRI (DT-MRI) provides a statistical estimate of a symmetric 2nd-order diffusion tensor, D, for each voxel within an imaging volume. We propose a new normal distribution, p(D) ∼ exp(- 1/2 D:A:D), for a tensor random variable, D. The scalar invariant, D:A:D, is the contraction of a positive definite symmetric 4th-order precision tensor, A, and D. A formal correspondence is established between D:A:D and the elastic strain energy density function in continuum mechanics. We show that A can then be classified according to different classical elastic symmetries (i.e., isotropy, transverse isotropy, orthotropy, planar symmetry, and anisotropy). When A is an isotropic tensor, an explicit expression for p(D), and for the distribution of its three eigenvalues, p(γ123), are derived, which are confirmed by Monte Carlo simulations. Sample estimates of A are also obtained using synthetic DT-MRI data. Estimates of p(D) should be useful in feature extraction and in classification of noisy, discrete tensor data.
  • Keywords
    biodiffusion; biomechanics; biomedical MRI; brain models; elasticity; feature extraction; image classification; medical image processing; normal distribution; Monte Carlo simulations; anisotropy; classical elastic symmetries; classification; continuum mechanics; diffusion tensor MRI data; eigenvalues; elastic strain energy density function; feature extraction; human brain; imaging volume; isotropic tensor; isotropy; noisy discrete tensor data; normal distribution; orthotropy; planar symmetry; positive definite symmetric fourth-order precision tensor; scalar invariant; statistical estimate; symmetric second-order diffusion tensor; synthetic DT-MRI data; tensor random variable; tensor-valued random variables; transverse isotropy; voxel; Anisotropic magnetoresistance; Capacitive sensors; Density functional theory; Diffusion tensor imaging; Eigenvalues and eigenfunctions; Feature extraction; Gaussian distribution; Magnetic resonance imaging; Random variables; Tensile stress;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Biomedical Imaging, 2002. Proceedings. 2002 IEEE International Symposium on
  • Print_ISBN
    0-7803-7584-X
  • Type

    conf

  • DOI
    10.1109/ISBI.2002.1029413
  • Filename
    1029413