DocumentCode :
2191521
Title :
On O(n) algebraic preconditioners for the fast multipole method
Author :
Carpentieri, Bruno
Author_Institution :
Karl-Franzens Univ., Graz
fYear :
2007
fDate :
30-31 Aug. 2007
Firstpage :
31
Lastpage :
34
Abstract :
In this paper we present the framework of preconditioners based on sparsification strategies for solving electromagnetic scattering problems expressed in an integral formulation. We review some recent results with sparse approximate inverse and multilevel techniques combined with the fast multipole method for large-scale surface integral equations. When computed from the near-part of the coefficient matrix, both classes of methods can maintain the algorithmic complexity of the matrix-vector product operation.
Keywords :
computational complexity; computational electromagnetics; electromagnetic wave scattering; integral equations; matrix algebra; vectors; algebraic preconditioners; algorithmic complexity; coefficient matrix; electromagnetic scattering problems; fast multipole method; integral formulation; large-scale surface integral equations; matrix-vector product operation; multilevel techniques; Convergence; Eigenvalues and eigenfunctions; Electromagnetic scattering; Integral equations; Iterative methods; Jacobian matrices; Linear systems; Mathematics; Scientific computing; Sparse matrices;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computational Electromagnetics Workshop, 2007
Conference_Location :
Zmir
Print_ISBN :
978-1-4244-1606-6
Electronic_ISBN :
978-1-4244-1606-6
Type :
conf
DOI :
10.1109/CEM.2007.4387647
Filename :
4387647
Link To Document :
بازگشت