DocumentCode
2194174
Title
A prototype modular detector design for high resolution positron emission mammography imaging
Author
Zhang, Nan ; Thompson, Christopher J. ; Jolly, Dean ; Cayouette, Francois ; Kecani, Steve
Author_Institution
Dept. of Biomed. Eng., McGill Univ., Montreal, Que., Canada
Volume
2
fYear
2002
fDate
10-16 Nov. 2002
Firstpage
858
Abstract
Current challenges facing us in developing dedicated position emission tomography (PET) system for metabolic breast mammography (PEM) and small animal (ANIPET) are to achieve high spatial resolution (less than 2 mm) and high efficiency. It is also crucial to extend the sensitive areas of PEM detectors to their periphery in order to overcome the difficulty in imaging near a patient´s chest wall. This limitation of the periphery dead region was revealed in the clinical trials of our previously developed PEM-I systems. In the new study, we developed prototype detectors by using position-sensitive photomultiplier tubes (PS-PMTs) and pixelated bismuth germanate (BGO) crystals with depth encoding scheme to detect and localize gamma rays. The procedures in crystal processing include cutting, polishing, encapsulating, separating, and re-gluing. We also developed front-end electronic circuits including high-voltage dividers, anode resister chains, position readout circuits, and last dynode timing circuits. Methods for combining four PS-PMTs with simple X+, X-, Y+, Y- outputs have been developed to further simplify the position recording. The detectors were constructed in the structure of array (two in the system) - module (four in each array) - unit (four in each module). The basic unit of one crystal and one PS-PMT can be as field replaceable. Our new prototype detectors show that the proposed PEM-II system has a spatial resolution of 1.8 mm (vs. 2.8 mm in PEM-1), a timing resolution of 10.3 ns (vs. 12 ns in PEM-I), and a field-of-view of 88 mm × 88 mm (vs. 64 mm x 56 mm in PEM-1). Compared with our previous PEM-I system, it demonstrates that the design improves the spatial resolution, enhances the detector field-of-view, and significantly reduces the peripheral dead regions.
Keywords
biomedical electronics; diagnostic radiography; gamma-ray detection; mammography; nuclear electronics; photomultipliers; positron emission tomography; radiation monitoring; readout electronics; 1.8 mm; 10.3 ns; 2.8 mm; 56 mm; 64 mm; 88 mm; PEM; PEM-II system; PET; PMT; anode resister chains; chest wall; crystals; depth encoding scheme; front-end electronic circuits; gamma rays; high efficiency; high resolution positron emission mammography imaging; high-voltage dividers; last dynode timing circuits; metabolic breast mammography; pixelated bismuth germanate; position readout circuits; position-sensitive photomultiplier tubes; prototype modular detector design; spatial resolution; Circuits; Gamma ray detection; Gamma ray detectors; High-resolution imaging; Image resolution; Mammography; Position sensitive particle detectors; Prototypes; Radioactive decay; Spatial resolution;
fLanguage
English
Publisher
ieee
Conference_Titel
Nuclear Science Symposium Conference Record, 2002 IEEE
Print_ISBN
0-7803-7636-6
Type
conf
DOI
10.1109/NSSMIC.2002.1239460
Filename
1239460
Link To Document