DocumentCode :
2200017
Title :
Thermal analysis and verification of a mounted monolithic integrated circuit
Author :
Harris, T. Robert ; Melamed, Samson ; Luniya, Sonali ; Davis, W. Rhett ; Steer, Michael B. ; Doxsee, Lawrence E., Jr. ; Obermiller, Kurt ; Hawkinson, Chad
Author_Institution :
Electr. & Comput. Eng. Dept, North Carolina State Univ., Raleigh, NC, USA
fYear :
2010
fDate :
18-21 March 2010
Firstpage :
37
Lastpage :
40
Abstract :
As circuit density increases and high-power applications are facilitated, thermal considerations become paramount a design concern. In this paper, a high power monolithic microwave integrated circuit (MMIC) is modeled by the fREEDA multi-physics simulator and measured for validation. While validation is the crux of any simulation model, it is known that thermal measurements accurate to a high resolution are problematic. As such, the thermal profile of integrated circuits cannot be measured directly with infrared thermal imaging due to unequivalent emissivities of materials. It becomes necessary to use an absorptive ink to approximate a blackbody so that the infrared emissions can be used to infer temperature. The impact and effect of this thermal imaging technique is investigated in this work by comparing measurements with detailed thermal simulations with and without the surface treatment. Thermal analysis uses the finite element method and a reduced-order model based on cuboids with effective thermal conductivities. The end goal is to provide a simulation tool to designers, which can be extended to any project which requires attention to thermal preference.
Keywords :
MMIC; finite element analysis; infrared imaging; surface treatment; thermal analysis; thermal conductivity; thermal management (packaging); absorptive ink; cuboids; fREEDA multiphysics simulator; finite element method; high power monolithic microwave integrated circuit MMIC; infrared emission; mounted monolithic integrated circuit; reduced-order model; surface treatment; thermal analysis; thermal conductivity; thermal imaging; thermal verification; Circuit simulation; Integrated circuit measurements; Integrated circuit modeling; MMICs; Microwave integrated circuits; Microwave measurements; Monolithic integrated circuits; Optical imaging; Power measurement; Thermal conductivity; MMIC; compact modeling; electrothermal; fREEDA; heat transfer; simulators;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
IEEE SoutheastCon 2010 (SoutheastCon), Proceedings of the
Conference_Location :
Concord, NC
Print_ISBN :
978-1-4244-5854-7
Type :
conf
DOI :
10.1109/SECON.2010.5453924
Filename :
5453924
Link To Document :
بازگشت