Title :
Sparse Representations of Image via Overcomplete Dictionary Learned by Adaptive Non-orthogonal Sparsifying Transform
Author :
Tang, Zunyi ; Yang, Zuyuan ; Ding, Shuxue
Author_Institution :
Grad. Sch. of Comput. Sci. & Eng., Univ. of Aizu, Aizu-Wakamatsu, Japan
Abstract :
How to learn an over complete dictionary for sparse representations of image is an important topic in machine learning, sparse coding, blind source separation, etc. The so-called K-singular value decomposition (K-SVD) method [3] is powerful for this purpose, however, it is too time-consuming to apply. Recently, an adaptive orthogonal sparsifying transform (AOST) method has been developed to learn the dictionary that is faster. However, the corresponding coefficient matrix may not be as sparse as that of K-SVD. For solving this problem, in this paper, a non-orthogonal iterative match method is proposed to learn the dictionary. By using the approach of sequentially extracting columns of the stacked image blocks, the non-orthogonal atoms of the dictionary are learned adaptively, and the resultant coefficient matrix is sparser. Experiment results show that the proposed method can yield effective dictionaries and the resulting image representation is sparser than AOST.
Keywords :
dictionaries; image representation; iterative methods; learning (artificial intelligence); sparse matrices; adaptive orthogonal sparsifying transform method; nonorthogonal atoms; nonorthogonal iterative match method; overcomplete dictionary; resultant coefficient matrix; sequentially extracting columns; sparse image representations; stacked image blocks; K-SVD; non-orthogonal sparsifying transform; overcomplete dictionary; sparse representations;
Conference_Titel :
Intelligent Networks and Intelligent Systems (ICINIS), 2010 3rd International Conference on
Conference_Location :
Shenyang
Print_ISBN :
978-1-4244-8548-2
Electronic_ISBN :
978-0-7695-4249-2
DOI :
10.1109/ICINIS.2010.151