DocumentCode :
2202261
Title :
Maximum-likelihood template matching
Author :
Olson, Clark F.
Author_Institution :
Jet Propulsion Lab., California Inst. of Technol., Pasadena, CA, USA
Volume :
2
fYear :
2000
fDate :
2000
Firstpage :
52
Abstract :
In image matching applications such as tracking and stereo matching, it is common to use the sum-of-squared-differences (SSD) measure to determine the best match for an image template. However, this measure is sensitive to outliers and is not robust to template variations. We describe a robust measure and efficient search strategy for template matching with a binary or greyscale template using a maximum-likelihood formulation. In addition to subpixel localization and uncertainty estimation, these techniques allow optimal feature selection based on minimizing the localization uncertainty. We examine the use of these techniques for object recognition, stereo matching, feature selection, and tracking
Keywords :
image matching; maximum likelihood detection; feature selection; image matching; image template; maximum-likelihood formulation; object recognition; outliers; search strategy; stereo matching; sum-of-squared-differences; template matching; tracking; Image matching; Laboratories; Maximum likelihood detection; Maximum likelihood estimation; Object recognition; Performance evaluation; Pixel; Postal services; Propulsion; Robustness;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer Vision and Pattern Recognition, 2000. Proceedings. IEEE Conference on
Conference_Location :
Hilton Head Island, SC
ISSN :
1063-6919
Print_ISBN :
0-7695-0662-3
Type :
conf
DOI :
10.1109/CVPR.2000.854735
Filename :
854735
Link To Document :
بازگشت