• DocumentCode
    2203200
  • Title

    Research on Parameter Optimization of the Boolean Kernel Function

  • Author

    Feng, Han ; Yingshuang, Du ; Kebin, Cui ; Shumao, Zhang

  • Author_Institution
    Sch. of Comput. Sci. & Technol., North of China Electr. Power Univ., Baoding
  • fYear
    2008
  • fDate
    20-22 Dec. 2008
  • Firstpage
    1076
  • Lastpage
    1079
  • Abstract
    It is significant to choose super parameter of the kernel function in non-liner SVM for the constructed classifier. As to the boolean kernel function, the research is comparatively less than other kernel function in the internal and international country, and the selection of its parameter is mainly through handwork. This paper researched and analyzed some main measure to choosing parameter of kernel function, discussed the optimizing principle of parameter, which to minimize the RM bound. In the paper, it proposed an abbreviated algorithm by adopting constant iterative step length to optimize the parameter, aiming at super parameter of the boolean kernel function KMDNF, which implemented automatic selection.
  • Keywords
    Boolean functions; iterative methods; learning (artificial intelligence); minimisation; pattern classification; support vector machines; RM bound minimization; boolean kernel function; constant iterative step length; constructed classifier; machine learning; nonliner SVM; parameter optimization; radius-margin bound; support vector machine; Artificial intelligence; Boolean functions; Computer science; Constraint optimization; Iterative algorithms; Kernel; Power engineering and energy; Power engineering computing; Support vector machine classification; Support vector machines; Boolean Kernel Function; parameter optimization; radius-margin bound; super parameter;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Advanced Computer Theory and Engineering, 2008. ICACTE '08. International Conference on
  • Conference_Location
    Phuket
  • Print_ISBN
    978-0-7695-3489-3
  • Type

    conf

  • DOI
    10.1109/ICACTE.2008.81
  • Filename
    4737123